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The accurate and efficient computation of the elements in the 
impedance matrix is a crucial step in the application of Galerkin’s 
method to the analysis of planar structures. As was demonstrated in a 
previous paper, it is possible to decompose the angular integral, in 
the polar representation for the 2D Sommerfeld integrals, in terms 
of incomplete Lipschitz-Hankel integrals ( ILHls) when piecewise 
sinusoidal basis functions are employed. Since Bessel series expan- 
sions can be used to compute these ILHls, a numerical integration of 
the inner angular integral is not required. This technique provides an 
efficient method for the computation of the inner angular integral; 
however, the outer semi-infinite integral still converges very slowly 
when a real axis integration is applied. Therefore, it is very difficult to 
compute the impedance elements accurately and efficiently. In this 
paper, it is shown that this problem can be overcome by using the ILHI 
representation for the angular integral to develop a novel asymptotic 
extraction technique for the outer semi-infinite integral. The usefulness 
of this asymptotic extraction technique is demonstrated by applying it 
to the analysis of a printed strip dipole antenna in a layered medium. 
0 1992 Academic Press, Inc 

1. INTRODUCTION 

Monolithic microwave and millimeter-wave integrated 
circuits (MMICs) comprise an emerging technology with a 
wide variety of applications in the field of computers, 
remote sensing, signal processing, and communications. 
Due to the planar geometries that are inherent in most 
passive MMIC structures, the spectral domain technique 
can often be used for their analysis. 

The spectral domain technique is a very general method 
which can be used to construct an “exact” integral equation 
for planar geometries [ 11. The structure can have an 
arbitrary number of layers, where each layer is charac- 

terized by a thickness, permeability, and a complex permit- 
tivity, which enables losses to be accounted for. It is 
a very powerful technique since it accounts for radiation 
and mutual coupling effects. These effects are very impor- 
tant for the accurate analysis of densely packed MMIC 
circuits. 

After the integral equation has been formulated for the 
problem, the next step involves solving for the unknown 
current distribution on the structure. An approximate solu- 
tion can be obtained by employing the method of moments 
(MOM). This method involves approximating the integral 
equation for the structure by a set of linear equations which 
can then be solved using standard matrix techniques. 
However, before the system of linear equations can be 
solved, the elements in the impedance matrix, which can be 
represented in the form of two-dimensional (2D) Sommer- 
feld integrals, must be computed. It is important to develop 
efficient techniques for the calculation of the elements in the 
impedance matrix since this task usually requires a large 
percentage of the total computation time in a MOM 
problem. 

As was demonstrated in [2], application of Galerkin’s 
method to printed circuits in planar geometries involves 
filling an impedance matrix whose elements have the 
general form [2, (7)], where the angular integral is given by 
[2, (S)]. This is the spectral domain representation for the 
impedance elements. As is noted in [2], the impedance 
elements can also be represented in the spatial domain. The 
spatial domain representation involves a 4D spatial integra- 
tion of the Green’s function for the problem. 

The integral in [2, (7)] will be referred to as a 2D 
Sommerfeld integral since the angular integral cannot be 
expressed in terms of Bessel functions like it can in the case 
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of the 1D Sommerfeld integrals found in the Green’s func- 
tion [3-6]. 

Reference to [2, (7), (8)] shows that eflicient techniques 
must be developed for both the inner angular integral and 
the outer semi-infinite integral. The problem concerning the 
accurate and efficient computation of the angular integral is 
addressed in [2]. In that paper, it was shown that the 
angular integral can be decomposed into a finite number of 
incomplete Lipschitz-Hankel integrals (ILHIs) which have 
the general form [2, (21)]. Therefore, the angular integral, 
in a 2D Sommerfeld integral, can be represented in terms of 
special functions just like in the case of the 1D Sommerfeld 
integrals (i.e., the spatial domain Green’s function). 
However, the ILHIs are more difficult to compute than the 
Bessel functions that were obtained in the case of the 1D 
Sommerfeld integrals. 

It turns out that the decomposition of the angular 
integral in terms of ILHIs not only yields an efficient techni- 
que for the computation of the inner integral, but it can also 
be used as the starting point for the derivation of a novel 
asymptotic extraction technique (AET) for the outer semi- 
infinite integral. The general idea is to use the series expan- 
sions for the ILHIs, that were derived in [7] and used in 
[a], to find an asymptotic expansion for the integrand of 
[2, (7)] which holds for large values of the spectral variable 
1, and which when integrated from some lower limit L to 
infinity can be efficiently calculated. If this can be accom- 
plished, then numerical integration will only be required 
over the range from 0 to L, thereby significantly improving 
the efficiency of the algorithm. A novel AET will be derived 
in this paper using the procedure which is described above. 

It is very important from a computational point of view 
to find some method for handling the asymptotic portion of 
the semi-infinite integral since the integrand only decays 
algebraically for large values of the spectral variable 2 when 
a real-axis integration is used. Using an AET not only 
improves the computational efficiency, but it also improves 
the accuracy of the final result. 

AETs are used in [3-61 to improve the efficiency for com- 
puting 1D Sommerfeld integrals. The comparisons between 
the quasi-static and dynamic fields that are given in [4] 
show that the accuracy of the static approximation depends 
on the parameters in the problem. Therefore, the upper limit 
at which the integral in the AET is truncated also depends 
on the parameters in the problem. The most important 
parameter is the distance to the nearest interface. The 
authors of [S] demonstrate that the AET can be used to 
lower the value of the upper integration limit; however, no 
results are given for the amount of CPU time saved by using 
this method. The techniques illustrated in the above papers 
are less involved than the technique which will be developed 
in this paper, since they only deal with 1D integrals, but the 
idea is the same. 

In [8], the author takes this procedure one step further. 

He applies an AET to the 1D Sommerfeld integral, and then 
also carries out the four-dimensional surface integration 
that is required to compute the asymptotic portion of the 
impedance element. This technique was developed for pulse 
basis functions. 

An AET can also be applied to the 2D Sommerfeld 
integrals that are encountered in the spectral domain 
representation of the impedance elements [9, lo]. Pozar 
shows in [9] that a homogeneous-space term can be 
extracted from the integrand, thereby yielding a integral that 
converges more rapidly. We will refer to this method as the 
homogeneous-space term extraction technique (HSTET). 
Later, we will compare the AET that is developed in this 
paper with the HSTET. 

We will make a number of references to [7, 111 in this 
paper; however, the material that is contained in these 
papers can also be found in [ 121. 

2. BACKGROUND MATERIAL 

As was demonstrated in [2], the angular integral in 
[2, (8) J can be decomposed in terms of a new integral & 
[2, (17)]. It was also noted in Appendix A.7 of [2] that the 
correct result for Y1 is obtained if 4 is used in place of YJ in 
the expression for 9, [2, (20), (72)]. Expressing Y1 in terms 
of & simplifies the expressions in the AET. Taking advan- 
tage of this, we can use the results in [2] to show that 

4(kA, I, x, 0, (0, 0, &, 1)) 

=$-ww+4 cm2 @Ad)1 $3,(k4,4 x, @, S) 

2 

+ 1' [-4cos(k,d)]*+ 
p= -2 

Ji(kl, 2, x+p4 92% wls=(o,o,s,,1)~ (1) 

where Cb means to sum over all p excluding p = 0. 
After decomposing the angular integral in terms of ILHIs, 

the series expansions that are derived in [7] are used in [Z] 
to compute these ILHIs. These series expansions will also be 
used in the AET which is developed in the next section. 

3. ASYMPTOTIC EXPANSION 
OF THE INTEGRAND 

Before we start the analysis, it is useful to define the 
following quantities for S = (0, 0, S3, 1): 

~g(n)=u([fy)(n, O)-f:“‘(A O)l D,l,=, 

+f:“‘wwU.,=11 (2) 
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and 

The contribution to Z,,, which is due to large values of the 
spectral variable II, can be separated out from [2, (7)] by 
defining a new integral (see [2, Table III, (47) (48), (72) 
(7311, (lh (21, and (3)) 

x [2 + 4 cos’(k, d)] 

+ ;’ [-4cos(k,d)]2-‘P’ 
p= -2 

x 444 x + ~4 q2u) 
I 

4 (4) 

where L is chosen large enough that the asymptotic expan- 
sions, which are derived in Appendix A, will provide the 
desired accuracy for the integrand. 

We will start the analysis by looking at the asymptotic 
behavior of tpy. Referring to [2, (lo)], we find that 

--jA l--$$-%+C3~-6) . 1 (5) 
In order to find the behavior of the reflection coefficients for 
large values of I, we can substitute (5) into [Z, (12), (14)], 
yielding 

Ir$y)I cc jr$9)1 K I,-W.+I. 7 2% Ikpql. (6) 

If we assume that only non-magnetic materials are present 
in the problem (i.e., pLpq = P,,), then we can use [2, (9), (16)] 
along with (6) to show that the asymptotic expansions, 

jy’(/l, 0) - UP0 

A2(Tll + ~pll) 

(7) 
j-l?“‘@, 0) - WOtllT-11 

~2(q,k:,, +rp,,k:,)’ 

hold when R is large enough that 

(8) 

where SD is the desired number of significant digits. 
Furthermore, substituting (5) into (7) enables us to write 

(9) 
flll)(A, o) - -h+o (k;, +@,,I 

W:, +kZ_,,) ’ - 2L2(k:, + k: 11) 

- (k:,+k:,kZ,,+k:,,)+ 
8L4 

An asymptotic expansion for YE)(A) can now be 
obtained, using [2, Table III], (2), and (9), 

where 

c(l) = 1 
0 

c;” = 2k:, - (k;, +k:,,) 
W:, +kt,,) 

3,+ (k:,+k4_d 
6% +k:,,) 1 

(k;,+k:,k:,, +k‘?,,) k:,k411 - 
8 + (k:, +@,,I* 

(13) 

c($-(k:*+k’,,)~k~ - 
2 A 

(5)_(k:1+kZ11)2+k:(k:,+k411)_k4 
Cl - 8 W:,+k2_,,) A 

(14) 
,:li,_(k:,+k:,kZ,,+k4,,)C(k:l+k~,,)+2k:1 - 

16 

k2 k4 k4 A 11 -11 k4,(k;l, +&A -k6 

- (k:, + k?,l)2+ 2(kf, + k:,,) A’ 
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49, _ Gel + k2 11) + k2 - 

2 A 

q) _ (G1+ k2 11)’ - 
8 - 

kW1 +k:lklll +k4,,)+4k4 
(Gl +C,,) 

A 

(k:, +kZJ* 
8 1 

2(k:l+k4,,)+(k:,+kZl,) +8k6. 
2 1 A 

The next step is to obtain an asymptotic expansion for 
&, which when integrated from L to co, as is required in 
(4), can be represented in terms of special functions. This 
will involve finding expansions for Y,, Y4, and Yi2. Expan- 
sions for these three functions are obtained in Appendix A. 

Referring to (3), (lOt(l2), (56), (59), (60), (64), (66), 
(68), and (69), we find that in order to evaluate Z;,, (4) we 
need to evaluate integrals that have the general form 

j,,,(L, r) = Jr F dA. 

If we carry out all of the expansions in J. to the same order 
as in (5), then we will need to compute j,,,(L, Y) for 
m = 3, 4, . . . . 10 and n = 0, 1, . . . . Therefore, all that we need to 
do is find an efficient way to compute integrals which are of 
the form given above. Since we will need to compute a 
sequence of these integrals, it is beneficial to use a 
recurrence algorithm. We have found that the recurrence 
relation 

j,,,(L,r)-jn=:~~~j,.,+2(L,r) n 

W+ 1) J,+,(Lr) =-- 
(n+l-m) rL” (17) 

is well suited for this purpose. The above recurrence relation 
can be obtained by rearranging [13, (11.3.6)]. Examining 
(17), we find that this recurrence relation decouples when 
n + 1 -m = 0. At this point, the recurrence relation can be 
rewritten as 

(18) 

Before we use (17), we must determine in which direction 
the recurrence is stable. In Appendix B, we show that (17) 
can be used stably in the forward direction for all values 
of m and Lr. When the recurrence relation decouples at 

the point n + 1 -m = 0, (18) can be used to restart the 
recurrence. Therefore, if we can find a way to obtain the 
starting functions j,,,(L, r) and j,, ,(L, r) for m = 3,4, . . . . 10, 
then we can use (17) in the forward direction to obtain 
j,,,(L, r) for n = 2, 3, . . . . 

Using [ 13, (11.3.4)], we can show that 

j CL r)- (m+n+ l’i,+l,,+l(Lr) m,n Y r 

= _ Jn+ l(Lr1 
rL” . 

We are interested in using (19) for the two special cases 
wheren= -1 andn=O: 

jm,l(L, r)+mjm+l,o(L r)=- J&r) 
r rL” 

j,,dL, f-1 - - 
m+lj 

m+l,l(L, r)= -F. 
(20) 

r 

This shows that once the two starting functions, j,,,(L, r) 
and j,,,(L, r), are obtained for one value of m, then the 
recurrence relations in (20) can be used to compute the star- 
ting functions for the other values of m. As is shown in 
Appendix B, the recurrence relations in (20) can be used 
stably in the forward direction to compute j,,,(L, r) for 
m=m max + 1, mmax + 2, . . . . 10, and backward recurrence 
can be used stably for m = mmax - 1, mmax - 2, . . . . 3. Thus, if 
we can find some way to compute j,,,,,o(L, r) and 
im,,, > 1 (L, r), then we can use (20) to compute the starting 
functions for the other values of m. This task is carried out 
in Appendix C. 

4. COMPUTATION OF JL” &,(A, x, y) dA 

Now that we have developed all of the required tools, we 
can construct an efficient algorithm for the computation of 
JF &(1, x, y) dA, where & is defined in (3). Once we can 
compute this integral, then (4) can be used to compute 
-c,(L). 

Up to this point, we have not specified a value for L. If we 
carry out all of the expansions to the same order of accuracy 
as in (5), then we will obtain SD significant digits in the 
expansions provided that L satisfies the following 
inequality: 

max(k,,, k-,,, kA) 1 6 
L (21) 

The inequality in (8) gives a second constraint for the choice 
for L: 

e-21min(zll, -Z-II) < ix lo-SD. (22) 
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We will choose the minimum value of L that satisfies the Using numerical tests, we found that this expansion can be 
above two inequalities. used to compute 9r7(x, y; 6). 

The first integral that we will look at is (see (3)) Next, we need to find an efficient way to compute 
.Yi,(x, p; 2 + 2i) for i = 0 and i = 1. We will develop a 

5 Oc s’,;‘(n) tR{A,(A, x, y, 0, l)} dL (23) 
recurrence relation for this purpose. When x # 0, we can use 

L 
integration by parts, where u = Je,(j cos BO, nr)/L”’ ’ and 
do = &lx dA, and [2, (21)] to show that 

Referring to (lo), (16) and (56) we find that 

Jeo(j cos 8,, Lr) - (n + 1) 

I 

- j2mopo 2 

= Ck:, + kZ,,) i=O c .I 
‘jl) ti3+2i,1tL9 y, 

x47(x,y;n+ 1)+rj,+,,,W, r) ; 
i 

x # 0. 

(29) 

-2~ i: (-1)ksinC(2k+1)e,lj,+2i,2k+1(L,r) . We only need to compute %{9i7(x, y; n)} for even values of 
k=O n, therefore, we can use (29) to show that 

(24) 

This series will not converge until 2k + 1 B Lr (see (76) and 
(78)). In order to investigate the convergence of (24), we can 
use (78) to show that 

qx247(x, y; n) + (n + l)b + 2) 47(x, y; n + 2)) 

=(n+l)tin+2,0(Lr) 

+ [(n + 1) %{ejL”Jeo(jcos 8,, Lr)} 

1 r 3P2ir(k-i-1/2). 

0 
j3+2i,2k+l(L, ‘1”; 2 T(k+i+5/2)’ 

- Lx3{eiL”Jeo(j cos Bo, Lr))]/L”+‘. (30) 

2k+l%Lr. (25) When x = 0, we can rewrite (29) as 

This shows that when summing over k in (24), the series will 
converge more rapidly when i = 2 than when i = 0. Actually, 
we have found that there are numerical problems associated 

A Jeo(O, Ly) + yj,,,(L, r) 1 . (31) 

with summing the series over k for i = 0 and i = 1. Therefore, 
we will attack the problem from a different angle. Before we can use (29), we need to perform a stability 

If we define analysis. The homogeneous solution of (29) is given by [ 141 

(jxY Y$(x, y; n) = ~ 
qn+ 1)’ (32) 

then it can be shown that (see [2, Table III] and (10)) and an index of stability for forward recurrence is given by 

- j2mopo 2 
C cl’){ti3+2i,l(Lv r) 

=(k:,+kZ,,)i=o 

Mk, n) = 
4,(x, Y; k) J%‘(x, Y; n) 
4,(x> Y; n) J%‘(x, Y; k) 

- y sin 8, %{Y,,(x, y; 2 + 2i)}}. (27) 
where 

Now, comparing (24) with (27), we find that 

‘32{4,(x,Y;2+2~)} 
P&) = 

47(x, y; 0) 9$(x, y; n) 
47(x, Y; n) 

(33) 

=&&l’* We need to obtain an approximation for 1$,(x, y; n)l 
before we can use (33). This can be accomplished by sub- 

xWW+ 1) e0ij3+2z,2k+1 (L, r). (28) stituting [7, (77)] into (26): 
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min(Lr, Lr Jcos 8, * 11) B 0. (35) 

When min(Lr, Lr lcos B0 f 1 I) b 1, we can use (96) to show 
that 

Now, we can use (32), (34), and (36) to show that 

ILXI” 
Pi,(n)---’ r(n+ 1)’ 

ILxl BOO. 

(36) 

For values of x that are of the same order as y, L’ will be the 
smallest value of 1 that will satisfy the inequality in (63) for 
1 B k, . Therefore, the second integral on the right-hand side 
of (39) can be computed using (59) and (60). Now, if we 
substitute the convergent series expansions, (68) and (691, 
into the first integral on the right-hand side of (39), then the 
evaluation of this integral involves the computation of 

(41) 

We can use a modified version of (17) to compute 
j,,,(L, L’, r), 

AAL, L’, r) - in 1: T ~~.fm,n + 2(L, L’, r) n 

2(n + 1) 

[ 
Jn+l(Lr) _ J,+lW’r) 

=r(rz+l--m) L” CL’)” 1 ; (42) 

(37) 
however, we must first perform a stability analysis. Since we 

We can also show that (37) still holds when (cos B0 I z 1 by 
substituting [7, (go)), instead of [ 7, (77)], into (26). 

Referring to (30), (37), and [7, (106)], we find that once 
$i,(x, y; 6) has been computed, we can stably use (29) in the 
backward direction to calculate YiJx, y; 4) and Yi,(x, y; 2) 
when ILxJ > 7.0 (see [14] for details of the stability 
analysis). When ) Lx1 < 7.0, we can still use backward 
recurrence, but accuracy will be lost. However, this loss of 
accuracy will not cause problems for the applications which 
are presented. Therefore, we can use the results in this 
section to compute the integral in (27). 

The next step is to determine how to compute 

When the inequality in (63) holds, we can use the 
asymptotic expansions in (59) and (60). On the other hand, 
when the inequality in (63) does not hold, we will have to 
use another method to compute (38). When x = 0, we can 
use the convergent series expansions in (64) and (66). 
Finally, when the inequality in (63) does not hold and x # 0, 
we will make use of (68) and (69). In order to do this, we 
split the integrals in (38) into two pieces, 

j; { 1 di = j;’ { > dA + s,: { > d4 (39) 

where 

L’ = 3 In (2 Jz x 10SD). (40) 

have not changed the homogeneous equation, (72) and (73) 
will still hold. When n 4 Lr, we can obtain an approxima- 
tion for j&L, L’, r) by substituting (76) into (41). Since 
j,,,(L, L’, r) has the same kind of behavior as j,,,(L, r) 
when n G Lr, we conclude that (42) can be used stably in the 
forward direction. On the other hand, when n % L’r, we can 
use [13, (9.3.1)] to show that 

~,,,W, L’, r) - E 
( > 

n [(L’)“+‘-“-L”+l-m]. (43) 

JiG(n+l-m) 

Therefore, we find that (42) must be used in the backward 
direction when n B L’r. We have found using numerical 
tests that forward recurrence can be used to compute 
j,,,(L, L’, r) for n=O, 1, . . . . m, and backward recurrence 
can be used for n = m + 1, . . . . 

5. REFLECTION PROPERTIES 

OF jL” 442, x, Y) dA: 

We will look at the reflection properties for 
1: &(A, x, JJ) d;l in this section. However, first we will look 
at the reflection properties of Y,5. Using the results in [2], 
(2), and (3), we find that 

x { sin(M+ r) + sin(lF- r) > - 
27113r 

(12 _ k;) yi’4cn) 

x {Jm cos(~F+ r) + JET cos(AFp r)}. 

(44) 
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This expression can be further simplified by applying [ 13, 
(4.3.34)-(4.3.37)] 

4,(& -4 Y) 

= &(A 4 Y) + /&&‘,‘(A) sin(k,x) 

x cos( y J2-q) - 
41rL2 

(A2 - k;) 9’,‘,‘(A) 

x {k, y sin(k, x) sin( y JKX$) 

+x ~F7&os(k,x) cos(y JKq)). (45) 

When y#O, we can integrate both sides of (45) with 
respect to 2 and apply the change of variables, 
u = y dm, thereby obtaining (see (lo)-( 12)) 

s 
cc 

&(A -x, Y) di 
L 

I ‘= &(A x, Y) d2 + j2zwo = 
L 66% + k? 1,) 

(46) 

where u’=yJw. When A%k,, we can use [13, 
(3.6.9), (6.1.22), and (6.5.3)] to obtain the expansion 

XY 
2n+*i+3 r(n+i+3/2) 

f(n + 1) T(i + 3/2) 

X 

I 
sWA4 ,!9, 

k, ’ 
-x cos(k,x) CT:‘) 1 

1 
I 

a3 cos u du 
x- 

Y u’ U2n+2i+3 -k, y sin(k,x) ci” 

I 
m sin udu 

X U2n+2i+4 ; 
1 

yzo. 
u' 

(47) 

Referring to (9 1 ), we find that the integrals in (47) can be 
represented as incomplete gamma functions. Actually, the 
results in Appendix C can be modified and used to compute 
the incomplete gamma functions in (47). 

We will have to obtain another expansion for the special 
case y = 0. We start by integrating both sides of (45), where 
y is set equal to zero: 

s 
co .a&, -x, 0) dA 

L 

s Oc &(A, x, 0) dl + Pwo = i 
L k%k:, +k% i=o 

- x cos(k,x) ci” 1 

When I $ k,, we can use [ 13, (3.6.9) _ 

A 

(48) 

and (6.1.22)] to 
expand the square root in a power series, and then we can 
integrate term-by-term, yielding 

= 
s 3o &(A, x, 0) di, + Mwo 

L k:(k:, +k:,,) 

2 

x 1 
[ 

sin(k,x) c!9j k , -x cos(k,x) cj5) 
i=O A 1 

Xlf 
(kA)2n f(tI + 1/2) 

n=oT(n+1)r(1/2)(n+i+1)L2”+2’+*’ (49) 

6. COMPARISON WITH THE HSTET 

Now we will compare the AET which is developed in this 
paper with the HSTET which is used in [9, IO]. In order to 
apply the results in this paper, the lower limit of integration 
in (4), L, must satisfy the two inequalities in (21) and (22). 
We would like to choose L as small as possible, since it 
corresponds to the upper limit of integration in the numeri- 
cal integration routine that is used to compute [2, (7)]. The 
inequality in (22) is required for the approximations in (7) 
to hold. A similar approximation is required in the HSTET; 
therefore, the inequality in (22) applies to both methods. 

If we carry out all of the expansions in this paper to the 
same order of II as in (5), then we will obtain SD significant 
digits in the approximation for the integrand of (4) provided 
that the inequality in (21) is satisfied. In [93, the asymptotic 
form for Q [9, (8)] can be obtained from [9, (6)] by using 
what is equivalent to the first term in the expansion (5) 
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(Pozar’s k, and k, correspond to r _ i1 and z 1,, respectively). value of L that is one and one-half times greater than the 
Therefore (see [9, (8) and (13)]), minimum value of L which is found using (21) and (22). 

Q-Qh 1 -<-jx lo-SD, 
Q (50) 

for all p > L provided that 

ko,/‘k* 
[ 1 

1 
L 

<TX 10-SD. (51) 

The two inequalities in (21) and (51) can be used to find 
the approximate upper limit of integration, L, for the 
numerical integration routine. The inequality in (21) 
corresponds to a relative error bound for Z;,, 

z;,-ia 1 

Gzn 
mn<jX lo-SD, (52) 

where Z,, YF is the approximation which is obtained for Z;, 
by using the results in this paper. A more appropriate error 
bound would be 

z:, - ia 

Z mn 
mncix 10-y (53) 

however, this error bound is more difficult to use and does 
not provide insight into the problem. Therefore, we will use 
(21) and (51) to compare the two methods. Table I shows 
that carrying out more terms in the expansions, as is done 
in the AET, significantly reduces the ratio [L/k,] (where 
k,=max(k,,, k- ll,kA)andk,=k,~=max(k,,,k-t,) 
for the AET and the HSTET, respectively) which is required 
to satisfy (21) and (51). Therefore, a smaller upper limit of 
integration and a correspondingly lower number of sample 
points will be required if the numerical integration routine 
is used in conjunction with the AET, instead of the HSTET, 
to compute the semi-infinite integral in [2, (7)]. In order to 
ensure that the desired accuracy is achieved, we will use a 

TABLE I 

[L/k,] Required for a Given Accuracy 

No. of significant digits 
SD 

2 3 4 5 

1 
<,xlO-SD 2.42 3.55 5.21 7.65 

14.1 44.8 141.0 447.0 

The HSTET also requires that the expansion mode 
wavenumber, k, (see [2, (5)]), be chosen as 

kA=kc=W~~O(E11+&~,,)/2. (54) 

As Pozar points out in [9], “The use of k, as the wavenum- 
ber for the PWS modes, however, is sometimes a disadvan- 
tage in terms of overall convergence of the moment method 
solution for microstrip patches. As discussed in [15] and 
[16], the number of expansion modes needed for con- 
vergence of the input impedance of patches can be 
significantly reduced if an expansion mode wavenumber is 
chosen to correspond to the effective dielectric constant of 
the microstrip medium. This wavenumber is basically the 
same as k, for thin substrates, but may differ for thick sub- 
strates, in which case the moment method solution using k, 
will require a larger number of expansion modes for good 
results. In other words, the number of expansion modes 
needed for a given accuracy depends on the choice of the 
expansion mode wavenumber, and k, is not always the 
optimum choice.” In comparison, we are free to chose 
the optimal value for k, in the AET. 

When the HSTET is applied to a thin dipole antenna, ZLn 
can be represented solely in terms of exponential integrals 
and other elementary functions [lo, (18)]. However, an 
integration of the filamentary PWS modes across the width 
of the dipole is required for wide dipole antennas. On the 
other hand, the expansions which are given in this paper can 
be used for dipoles of any width; therefore, no numerical 
integration is required with the AET to obtain an 
approximation for Zz,. 

As we have shown in this section, there are a number of 
advantages associated with using the AET as compared 
with the HSTET. The major disadvantage of the AET lies in 
the complexity of the expansions. 

7. NUMERICAL RESULTS 

In order to demonstrate the power of the AET, we will 
use it in the analysis of a printed strip dipole antenna in a 
layered medium. In [2], the technique of decomposing the 
angular integral, of the 2D Sommerfeld integrals, in terms of 
ILHIs was used to obtain the current distribution on a 
printed strip dipole antenna in a hyperthermia applicator. It 
was demonstrated in [2] that significant improvements in 
the computational efficiency can be achieved by employing 
this technique instead of using a numerical integration 
routine to compute the angular integral. Now we will show 
that application of the AET dramatically improves both the 
computational accuracy and efficiency of the outer semi- 
infinite integral in the 2D Sommerfeld integrals. 
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The hyperthermia applicator which will be used to 
demonstrate the AET is described in [2, Section 33. We will 
use the same parameters as were used in [2] so that we can 
compare the results obtained in this paper with those 
obtained in [2]. The amount of computation time required 
to solve for the current distribution on the dipole antenna 
when the AET is employed is given in Table II. 

When brute force numerical integration is used to com- 
pute the outer semi-infinite integrals, the integration proce- 
dure must be truncated at some upper limit L. In [Z], this 
value of L was chosen by trial and error. This procedure is 
very inefficient. When the AET is employed, on the other 
hand, the truncation point for the numerical integration is 
chosen to be one and one-half times greater than the mini- 
mum value of L required in (21) and (51). For the problem 
under consideration, L = 1485.52. This truncation point is 
much smaller than those required in [a], therefore, fewer 
integration points will be required for the computation of 
the semi-infinite integral when the AET is employed. We 
will see that this leads to dramatic reductions in the com- 
putation time. 

The first column in Table II shows the number of basis 
functions that were used on the antenna. Antennas of two 
different lengths were investigated. The results for an 
antenna at the first resonance are given in columns two 
through four. Columns five through seven contain the 
results for an antenna length corresponding to the third 
resonance. The columns headed by “Z:,(L)” show the 
amount of computation time required to compute the 
asymptotic portion of the impedance elements. For the 
cases under consideration, the AET always took less than $ 
of the total computation time. A comparison between 
columns two and five shows that the AET is more efficient 
for the longer antenna. The reason for this is that the 
inequality in (63) is satisfied more often for the longer 
antenna since the values of r are larger for the longer 
antenna. When (63) is satisfied, the expansions in (64) and 
(66) can be used to compute the integrals in (38). On the 
other hand, when (63) is not satisfied, the integrals must be 

TABLE II 

Typical CPU Times for the Computation of the Elements in the 
Impedance Matrix for PWS Basis Functions 

Antenna length 

No. of 21= 2.34 cm 21= 1.76 cm 
basis - 

functions Z;,(L) ILHIs DOlAJF Z;,(L) ILHIs DOlAJF 

1 0.54 s 8.38 s 8.80 s 0.26 s 14.82 s 49.00 s 
3 1.68 16.02 20.38 0.86 30.74 91.42 
5 2.62 26.64 34.70 1.10 45.10 163.66 
I 3.78 36.92 48.04 1.78 60.44 236.40 
9 4.96 43.98 58.94 2.06 72.16 283.14 

split into two pieces (see (39)) and a more time consuming 
computational procedure must be applied (see Section 4). 

The outer semi-infinite integrals, which were actually 
truncated at L, were computed using a version of DOlAJF 
which was modified to compute complex valued integrals 
(see [ 173). The inner angular integrals were computed 
using one of two methods. The technique of decomposing 
the angular integral in terms ILHIs [2] was used to obtain 
the results in the columns labeled “ILHIs”; and the results 
listed in the columns headed by “DOlAJF” were obtained 
by applying the numerical integration routine DOlAJF 
from the NAG library to the computation of the inner 
angular integral. Reference to [2] shows that the NAG 
adaptive quadrature routine DOIAKF was used instead of 
DOlAJF in that paper. The reason for this is we found that 
DOlAJF worked better for small values of L and DOlAKF 
was better suited for large values of L. 

A comparison between columns three and four, or six and 
seven shows that the decomposition in terms of ILHIs 
provides a more efficient way to compute the angular 
integrals. This is especially true in the case of the longer 
antenna. The advantage of employing the AET is 
demonstrated by comparing the results in Table II and [2, 
Table I]. The AET not only provides a dramatic improve- 
ment in the computational efficiency, but it also allows for 
the accurate computation of the highly oscillatory integrals 
which the brute force double numerical integration routine 
could not handle (see [2, Table I]). 

8. CONCLUSION 

In conclusion, we have demonstrated that the asymptotic 
portion of the impedance elements (4) can be represented as 
a series of special functions which have the general form of 
(16). In addition, we have shown that recurrence can be 
used to compute the special functions (16) that are required. 
The application of this method to the analysis of a printed 
strip dipole antenna in a layered medium demonstrated that 
this novel AET provides an accurate and efficient way to 
compute the elements in the impedance matrix. Also, 
the computational efficiency can be further improved by 
applying the techniques which were developed in [2] to the 
inner angular integral. 

As was mentioned in [2], the techniques which have been 
developed in this paper are not restricted to PWS basis 
functions. They can be used with any basis functions which 
result in angular integrals which have the general form (1). 

APPENDIX A: EXPANSIONS 
FOR 9,, .Y4, AND & 

We will first concentrate on finding an expansion for 9,. 
If we substitute [7, (58)] into the expression for 3, [2, 
Table III], then we obtain the convergent series expansion, 
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%{.9-,(A, x, y, 0, 1)) = 2nL rJ,(lr) - y% t+ 

-k;o weo)k EkJk w)}. (55) 

We can use [ 18, (8.511.4)] to rewrite the above equation as 

q4(Lw,o, I,> 

=2d 
i 

rJ,(lr)-2y f (-l)k 
k=O 

x sin[(2k + 1) &] JZk+ I (56) 

Next we will obtain expansions for & and &. Since we 
are looking for an expansion which holds for large values of 
;1, we will make use of [7, (57)]. However, before we 
proceed with finding the asymptotic expansions, we will 
derive some useful intermediate results. 

Since we will be using [7, (57)], we will encounter terms 
which have the form (see [2, Table III, (47), (73)]) 

(JcT-c (J-)--b 

k 
xf - [ 1 f(m+k+1/2)T(n+m+k+l) 

n=O m+k r(1/2)Q2m+l)T(k+l)T(n+l) 
k+2m+Zn 

(60) 

Referring to (59) and (60), we find that these asymptotic 
expansions will only be useful when Iz B k, , Ix $2yk,, and 
Lx2 b 2r. Actually, we can use [7, (76)] to show that the 
asymptotic factorial-Neumann series expansion, which was 
used to obtain (59) and (60), will provide the desired 
accuracy if 

1 
2x 10-sD Je,(a, z) - - 

2 

>ia2+ll&ie 
-zJn2+‘1’2 max(1, /al). (61) 

If we modify [7, (77)], then we find that 

=(Ji-7;I,‘“+” 1+ Ptan8, 1 

COSb 8, [ 
- 

rl 

-’ 

l-P2 . 
(57) I [ 

ear Jeo(a, z) - ~ 
d-11 a2 + 1 

When P=k,/l<l and Ptan8,<1, we can use ([13], 
(3.6.9) and (6.1.22)) to obtain the series expansion 

(JCF) --c (Jiq, -b 

cos-beo m 
= f(b) 

c (TPtan0,)” f(m+b) 

m_of((m+b+c)/2)f(m+1) 

x f Pzn 
IJn+(m+b+c)/2). 

T(n+l) ’ 
c 2 0, b > 0. 

n=O 
(58) 

We can now use [7, (57); 2, Table III, (47), (73); 13, 
(6.1.18)] to obtain asymptotic expansions for YA and 9i2: 

T(m+k+ 1/2)T(n+m+k+ 1) 
Xr(1/2)r(2m+1)T(k+1)T(n+1) J&r) 

min(z, z lalj()PO. (62) 

Combining (61) and (62), we find that (59) and (60) will 
provide the desired accuracy provided the following 
inequality holds: 

Ir [l--F’, 1>2ln[2JZx 10SD]. (63) 

The above inequality shows that we need to find other 
expansions for Yd and & which will work when x is small. 

We will first look at the special case x = 0. For this case, 
we can use [7, (29); 2, Table III, (47), (73)] to show that 

k+Zm+2n+l 

(59) 
as 
Also, when I $ kA, we can use ([ 131, (3.6.9)) to rewrite (65) 
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APPENDIX B: STABILITY 
ANALYSIS FORj,,.(L, r) 

-27ry[l+g+yq{J’(AY) 

-24 gel”” r;z;2J}. (66) 

Now we will develop an expansion which can be used 
when the inequality in (63) does not hold and x # 0. This 
time we will use [7, (58)]. Once again it is beneficial to 
derive some intermediate results. First, the terms that we 
will encounter in the Neumann series expansion can be 
rewritten in the following form by using [13, (3.6.8) 
(6.1.21)]: 

b 

=f(b+l) f (-jY~((c-mY2+1) 
m=O f(m+ l)T(b-m+ 1) 

(- 1)” (kA/@n+m 
n=,r(n+1)T((c-m)/2-n+1) 

;c>b>O. 

(67) 

This result can now be used along with [7, (58); 2, 
Table III, (47) (73); 13, (3.6.9)] to obtain the expansions, 

=7I f f f coske,(k-2m)(k+1-2(m+n)) 
k=l m=O n=O 

t-11 “‘m+n2r(k+l)T((k+1)/2-m) 
Xf(2m+2)f(k-2m+1)T(n+1)T((k+3)/2-m-n) 

J,d~~r) (68) 

s ~32(& x> Y, k.JA) 

i I 

=2~{~JS.~l+k~o m.fo n~o[(~)2ysinkQo 

( 
k+l x(k-2m) 2-m-n 

> 

+ x cos kfI, (y-m) (2m+ 1)] 

(-1) “‘“‘“skr(k+1)ZJ(k+1)/2-mm) 
X~(2m+2)~(k-2m+1)~(n+1)T((k+3)/2-m-n) 

~[l+$+$](%y+~“J@)}. (69) 

We will first use the techniques in [14] to perform a 
stability analysis on (17). When n is an even integer, (17) 
takes on the general form 

jm,Zn(L f-1 + c,:,Ll,2(n+ l)(L? r) 

=f p2,; n = 0, 1, . ..) (70) 

where 

d(l) _ _ (2n + 1 + m) 
m,2n - (2n+ 1 -m) 

(71) 

f (1) =- ‘Wn + 1) J2, + ,(Lr) 
m, 2n (2n+l-m) rL” ’ 

The recurrence relation (70) behaves differently for even 
and odd values of m. When m is odd, the recurrence relation 
decouples at the point 2n + 1 -m = 0. On the other hand, 
when m is even the recurrence relation does not decouple. 
Since (70) behaves differently for even and odd values of m, 
we will have to handle the stability analysis for these two 
cases separately. 

We will first handle the case for even values of m. For this 
case, we can use [13, (6.1.22); 14, (A.24)] to show that the 
homogeneous solution for (70) is given by 

k=O 

=(-1)” Cr((m + 1 Y2)12 
r((m+1)/2-n)T((m+1)/2+n)’ 

meven,ormoddandOQ2n<m-3. (72) 

It is slightly more difficult, however, to find the 
homogeneous solution for (70) for odd values of m. When 
0 < 2n d m - 3, we can once again directly apply [ 13, 
(6.1.22); 14, (A.24)], since the forward recurrence starts at 
m = 0. Doing this, we find that (72) still holds for this case. 
On the other hand, when m is odd and 2n 2 m + 1, we will 
have to modify [14, (A.24)], since the forward recurrence 
will start at 2n = m + 1 (see (18)). This time we find that (see 
C141) 

n-1 
.(lh) _ J m,2n - n ,bd~,:,l-’ 

k=(m+l)/2 

=O+(l-m)P)f(m+l). 

r(n+(m+ 1)/2) ’ 

modd,2n>m+l. (73) 

581!98/2-4 
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In order to determine the stability of (70), we make use of 
the index of stability (see [14, (2.17)], 

a”‘(% 2n)= (74) 

where 

(75) 

Before we can use (74), we need to obtain an approximation 
forj,,JL, r). When n 6 Lr, we can use the first term in [ 13, 
(9.2.1)] to show that 

sin( Lr - nnj2 - z/4). 
rL” + 112 3 n G Lr. (76) 

On the other hand, when n B Lr and n + 1 > m > 4, we can 
split the integral into two pieces: 

Now we can use [13, (9.3.1); 18, (6.561.14)] to show that 

j,,,W, f-1 - rm-’ 
1 “r((n+ l-m)/2) K > Z r((n+ 1 +m)/2) 

eLr ’ ( > (Lr)‘-” . -- 
2n I JG(n+l-m) ’ 

n$-Lr,n+l>m>f. (78) 

We are finally at a point where we can calculate the index 
of stability for (70). We will first handle the case where m is 
an even integer, or m is an odd integer and 0 Q 2n < m - 3. 
When 2n b Lr we can use (72) (75), (78), and [13, (6.1.17)] 
to show that 

m+1’2 Isin(Lr-7r/4)) 
n3~2 

x[fq; m even, 2n 9 Lr. (79) 

On the other hand, when 2n $ Lr, we can use (72), (75), and 
(76) to show that 

(1) Cr((m + 1 P)Y 
P mv2nWT((m+ 1)/2-n)T((m+ 1)/2+n)’ 

m even or m odd and 

O<2n<mm3,2n6Lr. (80) 

Therefore, if we assume that an initial value, j,,,k(L, r), iS 

known, then an index of stability for the forward computa- 
tion of jm,2n(L, r) from j,,,,(L, r) can be obtained by sub- 
stituting (79) or (80) into (74). For the purposes of this 
paper, we will be interested in computing j,,,(L, r) for 
m = 3, 4, 5, . . . . 10. When m is even, or when m is odd and 
0 Q 2n < m - 3, we find that as n increases, the index of 
stability will be non-increasing; thus proving that (17) can 
be used stably in the forward direction (for more details, see 
[ 141). Actually, the above results have only been proven for 
the special case when n is an even integer; however, we could 
have used similar techniques to prove that forward 
recurrence using (17) is also stable when n is an odd integer. 

Next we will handle the case when m is an odd integer and 
2n > m + 1. For this case, the forward recurrence will start 
at 2n = m + 1; therefore, it will be easier to directly compute 
the index of stability (74). This time we can use (73) (74) 
and (78) to show that 

a”‘(m + 1, 2n) w 
( > 

i 
m 

J,(Lr) T(m + 1); 

modd,2n>m+1,2n$Lr. (81) 

Likewise, when 2n < Lr we can use (73) (74), and (76) to 
show that 

a”‘(m + 1, 2n) w 
nLr J- 2 J,(Lr) 

r(n+(l-m)/2)T(m+l) 
X~(n+(1+m)/2)~sin(Lr-nx-7r/4)l~ 

modd,2n>m+1,2n<Lr. (82) 

Once again we find that the index of stability (see (81) or 
(82)) will be non-increasing as n increases. Therefore, (17) 
can be used stably in the forward direction for all values of 
m and Lr. 

Finally, we will use the techniques in [ 141 to handle the 
stability analysis for (20). In order to simplify the analysis, 
we will combine the two recurrence relations in (20), 
thereby obtaining 

j,,,,(L, r) + d$??,o j2(,,,+ l,,O(L, r) =f&,, (83) 

where 

d(2) =(2m+1)2 
2m.O 3-2 

(84) 

f (2m + 1) Jo(Lr) -J (Lr) 

Lr 1 
(rL2”) 
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This time we find that the homogeneous solution is given by 
(see [13, (6.1.12)]) 

and that 

where we have made use of (76). 
For even values of m, the recurrence relations in (20) will 

have the same kind of behavior as that of (83). We could 
have also performed a similar analysis in order to determine 
the behavior of (20) for odd values of m. Actually, for 
general values of m, it can be shown that the index of 
stability for (83) can be written as (see [14, (2.17)]) 

d’)(k > m) = pE\/p”) , k.0, (87) 

where 

Lr m 

(>[ 
r(w) 2 

-1 1 r((m + 1)/2) . (88) 

Using [7, (106)], we find that pm,o reaches a maximum 
value when m = mmax, where 

m max = int(Lr - 1). (89) 

Therefore, if we use jm,,,,O (L, I) as a starting function, 
then reference to (87) and (88) shows that (83) can be used 
stably in the forward direction to compute j,,,(L, r) for 
m=m max + 1, mmax + 2, . . . . 10, and backward recurrence 
can be used stably for m = mmax - 1, mmax - 2, . . . . 3. 

APPENDIX C: EXPANSIONS FOR 
THE STARTING FUNCTIONS 

We will use two different techniques to compute the 
starting functions j,,,,,o(L, r) and jmm.,, ,(L, r). When 
Lr > SD + 4, where SD is the number of desired significant 
digits, we can use [ 13, (9.2.5)] to write 

j,,&, r) - Imp ’ dzC,(-a) 

- (fi,2;+1){cos[;(2n+l)] 

s 
‘x ’ 

X 

Lr t 
2~~~~i,2d~-sin[%(2n+l)] 

s 00 
X 

2kC+OmS : 312 dt ’ 
Lr t 

(90) 

Furthermore, the integrals in the above equation can 
be written in terms of incomplete gamma functions 
[13, (6.5.3)] 

s m~dt=‘%[jC-lr(l-p,jLr)] 
Lr 

s m ydl= -3[j”-‘T(1 -p,jLr)]. 
Lr 

(91) 

Therefore, if we can find a way to compute the required 
sequence of incomplete gamma functions, then we can use 
(90) to compute the starting functions, j,+,,,.o(L, r) and 
jm,,,,l(L r). 

Incomplete gamma functions also satisfy a first-order, 
non-homogeneous recurrence relation [ 13, (6.5.3), (6.5.22)], 

F(-n+$,z)+d;3’T(-(n+1)+&z)=ff’, (92) 

where 

(93) 

Applying the techniques for stability analysis in [ 14; 13, 
(6.1.12)], we find that the homogeneous solution for (92) is 
given by 

/fjl [-df’]-’ 
k=O 

Also, when z E S,, where 

s,= [z: (L ZI <xl, (95) 
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it can be shown that 

-Z-n- L/2e-z. 
3 IzI % 1, n 3 0. (96) 

Therefore, we find that the stability index is given by (see 
cl4, (2.l7)i) 

where 

(3) = P” 

d3’(k, n) = py’/pp’, (97) 

r( l/2, z) P( --n + l/2) 
r(-n+1/2,z) 

(98) 

Once again, we can use [7, (106)] to show that pn reaches 
a maximum value when n = nmax = int( IzI - 4). Therefore, 
once we obtain the starting function ZJ -nmax + 4, z), we 
can use (92) in the backward direction to obtain 
r( --n + i, z) for n = nmax - 1, . . . . mmax, and we can use 
forward recurrence for n = nmax + 1, nmax + 2, . . . . The con- 
tinued fraction expansion [13, (6.5.31)] provides the most 
efficient method for obtaining the required starting function 
r( -&lax + 1, z). 

In summary, when Lr > SD + 4, we can use [13, (6.5.31)] 
to compute the starting function r( -nmax + 4,jLr). Then 
we can use (90) to compute the desired integrals, 
jm,,,,O (L r) and .Lm,,, 1 (L, I), where the recurrence relation 
(92) is used to obtain the incomplete gamma functions in 
the asymptotic expansion. 

When Lr < SD + 4, a different method is required for 
computing the starting functions jm,,,,o(L, r) and 
jmmax. 1 (L, r). For this case, we find that (see (89)) 
m max < int(SD + 3). Therefore, if we compute the starting 
functions j,,,(L, r) and j,, ,(L, r), then (20) can be used 
relatively stably in the forward direction for SD < 5. It is 
true that we may loose some accuracy when we compute 
j,,,(L, Y) and j,,,(L, r) for m = 4, 5, . . . . 10, but the loss will 
not be significant. 

In order to compute these starting functions, we first split 
the integral into two pieces: 

j,,,(L, r) = Jy y dl. + r2j3J9, 1). (99) 

The second integral on the right-hand side of (99) can now 
be computed using (90) when SD < 5. This integral only 

needs to be computed once since it is independent of r. In 
fact, we find that 

j,,,(9, 1) = - 3.320658 x 10e4 

j,,,(9, 1) = - 1.795596 x lo-‘. 
(100) 

Now, if we expand the Bessel function, in the other piece, in 
a power series [ 13, (9.1.10)], and integrate term-by-term, 
we find that 

j3,0W, r) = r2 {j3,0(% 1) + 1 2[&-$1 

+ WW9) 
4 

+ .f [92k-2 - (Lr)2k-2] 

kc2 (-4)k [k!l’(2k-2) I 

i 

(101) 
j3,1(L r)=r2 j3,,(% 1) 

. 
[9=-I- (Lr)*k-‘1 

+k:o (-4)kk!(k+ l)! (4k-2) 
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